
Polymorphic Access Permissions

Nels E. Beckman∗ Jonathan Aldrich†

March 2010
CMU-ISR-10-109

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗nbeckman@cs.cmu.edu
†jonathan.aldrich@cs.cmu.edu

This work was supported by DARPA Grant #HR00110710019 and a grant from the National Science Foundation,
#CCF-0811592. The first author was supported by a National Science Foundation Graduate Research Fellowship,
#DGE0234630.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Polymorphic Access Permissions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper presents a polymorphic extension to a type system that prevents the misuse of object protocols.
Polymorphism allows classes to be generic in the Access Permissions in their specifications. Access
Permissions describe both the current state of an object and whether or not references to the object alias.
Polymorphic Access Permissions allow programmers to specify certain patterns that we have encountered
in practice, for example a collection of open, unaliased files. This paper also describes an implementation of
this system as a static typestate checker for the Java programming language.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

28

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: typestate, aliasing, fractional permissions, polymorphism

Abstract

This paper presents a polymorphic extension to a type system that prevents the misuse of object
protocols. Polymorphism allows classes to be generic in the Access Permissions in their specifica-
tions. Access Permissions describe both the current state of an object and whether or not references
to the object alias. Polymorphic Access Permissions allow programmers to specify certain patterns
that we have encountered in practice, for example a collection of open, unaliased files. This paper
also describes an implementation of this system as a static typestate checker for the Java program-
ming language.

1 Introduction
This paper presents a type system and a related implementation for a language that prevents the
misuse of object protocols. Such systems are generally known as typestate checkers. The novel
feature of this language is that its type system supports parametric polymorphism over Access Per-
missions, thereby addressing a key limitation of the type system upon which it directly builds [2].
We are unaware of any other static typestate checker that supports a similar level of expressiveness.

In practice, many classes in object-oriented programs define protocols. The protocols pro-
hibit certain methods of a class from being called at certain times, generally depending on the
state of class instances. To take a common example, consider Java’s Iterator interface. The
next method on an iterator should only be called if there are actually elements left to iterate over,
otherwise the call will result in a run-time exception. While classes may frequently define such
protocols, popular languages generally do not check that these protocols are obeyed. As a re-
sult, there has been considerable work in the research community on static and dynamic typestate
checking [13, 8, 11, 7].

Of the approaches that attempt to check protocol usage statically, the subset that work modu-
larly, checking each method once like a traditional type system, must somehow deal with aliasing.
When tracking an object’s state as it steps through a method body, the potential for unrestricted
aliasing means that any method call might potentially alter the state of that object through hidden
references. Typestate checkers typically deal with this problem by imposing aliasing restrictions
such as uniqueness [7, 8]. This paper builds on the work of Bierhoff and Aldrich [2] who intro-
duced the notion of Access Permissions for tracking object states and aliasing. Access Permissions
associated with program references track not only the state of the object referenced, but the per-
mission available to modify that object and potentially held by other references. This permission
information is encoded in one of five permission kinds, recapped in Figure 1, which greatly in-
creased the flexibility of aliasing when compared with existing approaches.

Other Refs. May:
This Ref. May: No Other Refs. Read Write

Read unique immutable pure
Write unique full share

Figure 1: The five permission kinds

Polymoprhism over Access Permissions is important for many of the same reasons that para-
metric polymorphism is already useful in standard type systems; it increases the precision of the
type system for types whose implementations are in some sense “ambivalent” about the objects
they reference. In Java 1.5 we can use this feature to define a class Stack<T>, a stack that can hold
elements of any type. When that class is instantiated with some type, say File, we are ensured
that that particular instance will only accept and return files.

In our case, Access Permissions statically describe the current state of an object reachable
through a reference, and whether or not that reference may be aliased by other references. By

1

enabling polymorphism over Access Permissions, programmers can write classes that are ambiva-
lent about their elements’ protocols and level of aliased-ness. For example, the same Stack<T>
class can be given polymorphic specifications. Later on, a stack can be instantiated in a variety of
different ways, say a stack of unique pointers to open files, or a stack of shared pointers to sockets
guaranteed to be open.

To give a clearer picture of the difficulties that arise without polymorphism, we will attempt to
specify just such a stack using our existing methodology [2]. Figure 2 shows the implementation
and specification of a mutable stack. This stack defines only two methods, push and pop. If pop
is called when the stack is empty, it simply returns null. The stack defines no protocol of any
interest, but since it is generic in the types of the elements it holds, its elements very well might.

1 @Invariants(@State(name="alive", inv="unique(first) in alive"))

2 class Stack<T> {
3 @Invariants(@State(name="alive",

4 inv="unique(next) in alive * pure(item) in alive"))
5 class Node { T item; Node next; }
6 Node first;

7
8 @Spec(post="unique(this) in alive")

9 Stack() { first = null; }
10
11 @Spec(pre="unique(this) in alive * pure(item) in alive",
12 post="unique(this) in alive")

13 void push(T item) { Node n = new Node();
14 n.item = item; n.next = first;

15 first = n;

16 }

17
18 @Spec(pre="unique(this) in alive",

19 post="unique(this) in alive * pure(result) in alive")
20 T pop() {

21 if(first == null) return null;
22 else { T result = first.item;
23 first = first.next; return result;
24 }

25 }

26 }

Figure 2: A specification of a Stack class, without polymorphism. It is weak in the sense that no
matter what state the elements of the stack are in, the caller of popmethod only knows the element
are in the “alive” state.

We have attempted to specify this stack in as general a way as possible. Because the implemen-
tation does not constrain the types of the elements it holds, it also does not constrain the protocols
defined by those elements. If a programmer only pushes open files on the stack, he expects open
files to be returned from the stack. Furthermore, for verification purposes, the implementation does
not constrain the permission kind associated with those elements. In other words, any permission

2

that the caller of the push method is willing to forfeit to the pushed item, can soundly be trans-
ferred to the eventual caller of the pop method. For these reasons, the Access Permissions to the
stack elements (highlighted in bold) in Figure 2 are as general as possible: the element must be
in the “alive” state (trivially satisfied by every object) and the element must have pure permission
kind (satisfiable with any other permission kind).

Unfortunately, this specification is quite imprecise. While it is easy to satisfy the pre-condition
of the pushmethod (line 11), for any object, the post-condition of the popmethod (line 19) is quite
weak. For example, for a stack of type Stack<File>, even if we push an open file, and the calling
site has the sole reference to that file f (signified by the Access Permission, unique(f) in Open),
we lose all this information when calling the pop method. The caller of the pop method receives a
permission to read but not modify a file that may be open or closed (pure(result) in Alive). The
caller would be unable to use methods that depend on the file being open, for example read. This
imprecision is analogous to state of Java collections before generics; the return type of the pop
method of Stack could only guarantee that the returned object was of type Object.

In practice [3] we have seen that when using the Access Permissions methodology for types-
tate checking, one is forced either to copy and re-specify an implementation of a collection several
times, once for each context in which it is used, or settle for false-positives. Collections are fre-
quently used as a means of ownership transfer between different threads and different program
structures.

This paper presents a type system that allows us to give Stack a single polymorphic specifi-
cation. A stack of unique, open files can share an implementation with a stack of shared, open
sockets without losing precision, such as in the specification of the pop method.

This paper will proceed in the following manner: Section 2 contains a brief recap of the type
system of Bierhoff and Aldrich [2] upon which this work directly builds. Section 3 describes
the type system in technical detail and contains the primary contribution of this work. As the
section progresses, we will attempt to motivate our new features and present a number of useful
examples. Since the specifications end up being rather verbose, Section 4 shows how we can
introduce syntactic sugar that greatly decreases the size of specifications written by programmers.
Section 5 describes our implementation before a discussion of related work and a conclusion.

2 Background: Access Permissions
Because our system is an extension of the type system of Bierhoff and Aldrich [2], some under-
standing of that system is necessary to understand our work. In this section, we will briefly recap
a few of the more novel aspects of this existing work.

Bierhoff and Aldrich [2] presented a type system for statically ensuring that object protocols
would not be violated at run-time. This system had a variety of novel features. For one, it allowed
a larger variety of aliasing patterns than previous approaches. It is important for static typestate
checkers to track aliasing in some manner because of the possibility of other references modifying
the state of an object that is being tracked. While existing typestate checkers required linearity for
any object with states [7], Bierhoff and Aldrich [2] introduced five permission kinds, described
in Figure 1, which record statically which references in a program could be used to modify, and

3

Figure 3: A graphical depiction of the protocol defined by the ResultSet class in the Java JDBC
library [3].

whether or not other references might alias the same object. The result was greater flexibility of
aliasing for tracked objects.

This approach also associated each access permission with a series of fractions. Fractions [6],
as used in verification, allow weaker aliasing permissions to be recombined in order to form
stronger permissions. The numerical value of the fractions indicate to the analysis at what point it
is guaranteed that all aliases have been eliminated. With fractions, a unique permission, for ex-
ample, can be temporarily split into three share permissions, distributed to references in different
parts of the program, and then be recombined into a unique permission.

Finally, this approach allows classes to define state hierarchies, which can exponentially de-
crease the number of cases that must be considered when writing specifications. If a class defines a
number of states, state refinement allows that same class, or its subclasses, to introduce new states
inside existing states. Consider the protocol defined by the ResultSet class in Java’s JDBC li-
brary, modeled as a UML State Diagram in Figure 3. At the top level of the state hierarchy defined
by this class, there is a simple Open/Closed protocol. When a ResultSet is closed by calling
the close method, any underlying database resources will be released. But within the open state,
we can see that there is a much more interesting protocol. Each time the next method is called,
the database result will advance to the next row in the collection of results. If this method returns
false, this indicates that there are no more rows in the result. Only if this method returns true,
do we say that the result is in the valid state, at which point the values for each column can be
queried. Finally, the wasNullmethod, which checks to see if the last column queried was actually
the database value “NULL,” can only be called after some column in the current row has been
queried. State hierarchies like this one allow simpler specifications, since some methods may be
ambivalent as to where exactly in the hierarchy an object lies. For example, the close method
requires only that the receiver be somewhere in the open state, and does not care if the result is
valid, unread, etc.

As part of the state hierarchy methodology, a permission can provide a state guarantee. A
permission with a guarantee promises that reference cannot be used to leave the guaranteed state.
Moreover, because of the means by which guarantees are created, a permission with a guarantee
also knows that no other reference can be used to leave that guaranteed state. This mechanism

4

exists to make certain weak permissions, for example share which indicates that any number of
modifying aliases may exist to the same object, much more useful. For instance, we might create a
permission for a ResultSet that guarantees the open state. This would ensure that no matter how
many aliases were created, none of them would ever be able to close the object. And thanks to
fractions, by gathering back together each permission created with that guarantee, we can remove
the guarantee later on, and close the result set.

There is also a notion of state dimensions. Dimensions refine states as well, but unlike states
which are mutually exclusive (an object can only be in one state at a time on a given level of
the hierarchy) dimensions are concurrent (an object must be in one state in every dimension on a
given level of the hierarchy). This allows us to model classes that define multiple, orthogonal state
machines. Dimensions in practice are quite a bit like Data Groups [12]. We will use the general
term “node” to refer to both states and dimensions.

In order to keep track of all of these elements, Access Permissions, the static predicates associ-
ated with each reference at every program location, have the following form (see Figure 5 for the
full syntax):

access(r, n, g, k, A)

r is the reference with which the permission is statically associated. n is the currently guaranteed
state. If no state is guaranteed, this will be “alive,” the root of the hierarchy for every type. g is the
fraction function. It maps each state in the state hierarchy between the guaranteed node and “alive”
to a fraction between zero and one. By keeping track of these fractions, we can tell when it is safe
to remove a previously-established guarantee, because other aliases no longer depend on it. k is the
below fraction. It exists so the analysis can track whether or not the associated reference has the
right to modify the current state of the object (if the value is greater than zero) and if this reference
is the only reference that has the ability to do so (if the value is one). Finally, A is the current state
of the object pointed to by the reference. In the next section we will show how our polymorphic
extension allows programmers to abstract over each element of the access permission.

Access Permissions are tracked linearly as they flow throw the body of a method, and they
are updated as each step of the method dictates. By tracking them linearly, we ensure that no
permission is unsoundly duplicated. A series of splitting and merging rules allows permissions of
one kind to be created from or in place of other permission kinds where it is sound to do so.

Four of the five permission kinds defined in Figure 1 are actually represented in our calculus as
access permissions of this form. These definitions are as follows:

unique ≡ access(r, n, {g, n 7→ 1}, 1, A)
full ≡ access(r, n, g, 1, A)
share ≡ access(r, n, g, k, A) (0 < k < 1)
pure ≡ access(r, n, g, 0, A)

Both unique and full permissions have a below fraction of one, indicating that we can modify A,
the current state of the object, through r, and that no other references have that right. The unique
permission also has a fraction of one to the guaranteed node n, ensuring that no other references
rely on the object being in state n, and giving it the freedom to change the guaranteed state. A
share permission has a below fraction between one and zero, indicating that it can be used to

5

modify the current state of the object, but that other references may also have that right. Finally
the pure permission, whose below fraction is zero, does not have the right to modify A.

For simplicity, we will leave the immutable permission kind out of our formal treatment, but it
can be represented by adding an additional flag to distinguish share and immutable permissions.

3 Polymorphic Access Permissions
This section describes our type system in technical detail. The basic idea is to take each ele-
ment of the Access Permission and allow the programmer to abstract over it at the method and
class levels. Bounds on these abstracted variables, enforced at instantiation-time, ensure that the
well-formedness rules of the Access Permissions are respected. Additionally, and perhaps most
interestingly, the system allows programmers to abstract over the classifiers of fractions and frac-
tion functions, not just the fractions themselves. This is useful because it allows programmers to
instantiate a collection with a permission kind while remaining ambivalent about the exact fraction
values.

Figure 4 gives the basic syntax for a core, object-oriented language with mutable state, inspired
by Featherweight Java [10]. While this syntax is essentially the same as previous work [2], there
are a few points to keep in mind. Each class can declare a number of new states and dimensions,
R. Dimensions, d, refine existing states by introducing a number of new, mutually exclusive sub-
states. As previously mentioned, an object must always be in one state in each dimension that it
defines. Any state or dimension can be associated with a predicate, called a state invariant, N ,
that must hold whenever the object is in that node. Our language has a limited form of constructor
I which can only specify an object’s initial state (or conjunction of states for objects of multiple
dimension) and the predicate required to establish that initial state. Field declarations F declare
that a field is “mapped” into a node, and that field can only be modified when the object is in
that node. This helps ensure that state guarantees actually guarantee an object’s concrete state.
Every method has a specification, MS, which consists of a pre- and post-condition, showing which
permissions it requires for the receiver and parameters, and which permissions it returns upon
completion. State invariants and method specifications are written using predicates P (Figure 5),
the standard forms of linear logic [9]. Access Permissions p, mention fractions k and fraction
functions g. A fraction is a literal 0 or 1, or a fraction divided by two. A fraction function is the
mapping of a node to a fraction, a fraction function divided by two or the concatenation of two
fraction functions. Programs must be written in a let-normal form. Most terms and expressions are
straightforward with the exception of pack and unpack. These two expressions are used together
and delineate portions of code where an object is temporarily not in any state. They help us check
that a method actually changes the state of the receiver object when its specification says it does.

3.0.1 The Syntax of Permissions and Abstraction

The most interesting new addition to the syntax is the ability to introduce type variables at the
class level, and permission variables at the class and method level. As seen in Figure 4, a class
can introduce any number of type variables, β. Type variables allow classes to be generic over

6

programs PR ::= ⟨CL, e⟩
class decl. CL ::= class C⟨β⟩[α : κ] extends C ′⟨T ⟩[a] { F R I N M }
field decl. F ::= f : T in n
state decl. R ::= d = s refines s0

initial state I ::= initially ⟨P, s1 ⊗ . . .⊗ sn⟩
state inv. N ::= n = P

meth. decl. M ::= T m[α : κ](T x) : MS = e
meth. spec. MS ::= P (E

terms t ::= x | true | false
| t1 and t2 | t1 or t2 | not t

expressions e ::= t | f | assign f := t
| new C⟨T ⟩[a](t) | t0.m[a](t) | super.m[a](t)
| if(t, e1, e2) | let x = e1 in e2
| unpack(n, k, A) in e | pack n to A in e

references r ::= x | f
types T ::= bool | β | C⟨T ⟩[a]

nodes n ::= α | s | d

classes C fields f variables x
methods m states s dimensions d type variables β

Figure 4: Syntax I: Programs, Classes, Terms and Expressions

other types and should be recognizable to those familiar with other polymorphic object calculi, for
example FGJ [10]1. Permission variables are more interesting.

A permission variable, α, can be introduced for the scope of an entire class, or just a method.
Each permission variable must be declared with an associated quantification classifier, κ, whose
syntax is described in Figure 5. This classifier determines what a variable can be used for within its
scope, and what sort of permission element can be instantiated for it. Those instantiating elements,
a, are applied at the site of the method call and object instantiation expressions and become part of
the class types, C⟨T ⟩[a].

But what is the nature of the quantification classifiers? Recall that an Access Permission, p in
Figure 5, has the following form:

access(r, n, g, k, A)

Our system allows each element, with the exception of the reference with which the permission is
associated, to be abstracted. Therefore, depending on the classifier that is used, a newly introduced
variable can stand for n, g, k, or A. The forms of the quantification classifier, κ, therefore are

1We have included traditional parametric polymorphism in order to make our examples more compelling. While
we have left out more interesting features like F-bounded polymorphism, we believe that these features are orthogonal
and can be added without any great difficulty.

7

quant. class. κ ::= α | Asmp(n, κ, T) | ω | Ω(ω, ω)
| ξ | Ξ(ξ) | NodeT

fract. funct. type ω ::= FF(n, n, T) | UFF(n, n, T)
fract. type ξ ::= Fract | Decimal | 1 | 0 | LessThan1 | GreaterThan0

inst. elems. a ::= α | A | ω | ξ | k | g
permissions p ::= access(r, n, g, k, A)

facts q ::= t = true | t = false
assumptions A ::= α | n | A1 ⊗ A2 | A1 ⊕ A2

fraction fct. g ::= α | n 7→ k | g/2 | g1, g2
fractions k ::= α | 1 | 0 | k/2

predicates P ::= p | q | P1 ⊗ P2 | 1 | P1 & P2 | ⊤ | P1 ⊕ P2 | 0
| ∃α:κ.P

expr. types E ::= ∃x : T.P
fract. terms h ::= g | k

valid context Γ ::= · | Γ,CL | Γ, x:T | Γ, β | Γ, α:κ | Γ, q
linear context ∆ ::= · | ∆, P

packedness υ ::= • | unpacked(n, g, k, A)

quantification variables α

Figure 5: Syntax II: Permissions, Abstraction and Checking

Node, a node type, ω, a fraction function type, ξ, a fraction type, and Asmp, an assumption type,
respectively. Variables of type ω can only be instantiated with fraction functions, and variables of
type ξ can only be instantiated with fractions, etc. The fact that these newly introduced quantifi-
cation variables can be used as elements of the Access Permission is reflected in the syntax, as α
appears as a valid form of the syntactic categories n, g, k, and A.

The three other forms of quantification classifiers, α, Ω, and Ξ, are used to further abstract over
the classifiers themselves, “one level up.” They will be covered in a subsequent section. Thus far
we have also neglected to discuss the various adornments of the quantification classifiers, such as
n, κ and T in the classifier Asmp(n, κ, T). These adornments form an overall part of the bound
on the quantification variable, and as we will show in the next section, are necessary in order to
ensure that Access Permissions that mention quantification variables remain well-formed.

3.0.2 The Static Semantics of Permissions and Abstraction

Every time a programmer writes down a specification, which may consist of a number of Access
Permissions, the static semantics of our language ensure that those permissions are well-formed.
The system’s well-formedness rules prevent certain programmer mistakes, such as the use of ab-
stract states that have not been defined. These well-formedness rules motivate many of the features
of our quantification classifiers. Let us consider the permission well-formedness rule presented by

8

Bierhoff [1]:

OLD WF-PERM
Γ ⊢ r : C C ⊢ A ≺ n

Γ ⊢ g : n 7→ Fract n = {all nodes between alive and n inclusive for C} Γ ⊢ k : Fract
Γ ⊢ access(r, n, g, k, A) wf

This is to say that, in some type-checking context, a permission is well-formed if the reference
has class type C, the assumption A only mentions nodes below or equal to the guaranteed node
n in the state hierarchy of C, the fraction function g maps a sequence of nodes n to fractions,
those nodes include all of nodes of C between alive and n, and k is a fraction. Since at the time
that quantification variables are introduced it is not known exactly which permission elements will
be instantiated for them, it is the job of the quantification classifiers to ensure that a well-formed
permission mentioning quantification variables will remain well-formed when those variables are
instantiated.

Suppose we wanted to create a simple class that holds a field of parametrized type and with
parametrized permission. Here is how we might declare such a class:
class OneField<β>[αn : Nodeβ , αg : FF(αn,alive, β), αk : Fract, αA : Asmp(αn,Fract, β)]

extends Object <>[] {
f : β in alive
...

alive = access(f, αn, αg, αk, αA) // State invariant
...

}

Let us examine each classifier in turn. αn, an abstraction of a guaranteed node, is declared
to have the classifier Nodeβ . This classifier says that αn must be instantiated with a node, and
that node must be a node in the state hierarchy of type β. While we do not, as of yet, know what
this type will be, αn will be instantiated after the type variable β, at which point it will be clear
whether or not the instantiated node is a node of the instantiated type. Next, αg is classified as
FF(αn, alive, β). This tells us that αg can only be instantiated with fraction functions, and those
fraction functions must contain a fraction for every node in the state hierarchy of β between αn

and alive inclusive. Note how the bound of one quantification variable is dependent on other
quantification variables. The classifier of αk, Fract says that it can only be instantiated with a
fraction. Finally, the classifier for αA, Asmp(αn,Fract, β) records that the variable can only
be instantiated with assumptions (i.e., the syntactic form A). Furthermore, it stipulates that the
instantiating assumption must be below αn in the state hierarchy of type β and, if the classifier
Fract can classify fractions below one (which in this case is trivially true!) the instantiating element
for αA must be equal to αn.

This last restriction deserves some mention. If a collection holds elements of share or pure
permission kind, it must account for the fact that the state of these elements can be changed under
the guaranteed node at any time. The assumption is therefore tied to the guarantee and can only be
below the guarantee if the eventual instantiating fraction for αk is one. (At the moment, αA must
trivially always be equal to αN , but after “classifier classifiers” are introduced, this will no longer
be the case.)

9

VAR
α:κ ∈ Γ

Γ ⊢ α : κ

SUBSM
Γ ⊢ a : κ Γ ⊢ κ ⊑ κ′

Γ ⊢ a : κ′ Γ ⊢ ω : Ω(ω, ω)

Γ ⊢ ξ : Ξ(ξ) Γ ⊢ 0 : 0 Γ ⊢ 1 : 1
Γ ⊢ k : GreaterThan0
Γ ⊢ k/2 : Decimal

SAME FRACT
Γ ⊢ k : κ κ ⊑ LessThan1

Γ ⊢ k/2 : κ

Γ ⊢ k : Fract
Γ ⊢ k/2 : Fract

FF-DIV2
Γ ⊢ g : FF(n1, n2, T)

Γ ⊢ g/2 : FF(n1, n2, T)

Γ ⊢ g : UFF(n1, n2, T)

Γ ⊢ g/2 : FF(n1, n2, T)

Γ ⊢ k : Decimal Γ ⊢ n : NodeT

Γ ⊢ n 7→ k : FF(n, n, T)

Γ ⊢ k : 1 Γ ⊢ n : NodeT

Γ ⊢ n 7→ k : UFF(n, n, T)
Γ ⊢ g1 : UFF(n, n′, T) Γ ⊢ g2 : FF(n′, n′′, T)

Γ ⊢ g1, g2 : UFF(n, n′′, T)

Γ ⊢ g1 : FF(n, n′, T) Γ ⊢ g2 : FF(n′, n′′, T)

Γ ⊢ g1, g2 : FF(n, n′′, T)

Figure 6: Classification of fractions and fraction functions.

The responsibility of ensuring that an instantiating permission element, a, satisfies the bound
imposed on it by a quantification classifier, κ falls on our type system. This is accomplished with
the judgment, Γ ⊢ a : κ, which says that under a valid typing context Γ, the instantiating element
a can be classified with κ. The rules for this judgment are shown in Figures 6 and 7.

Some discussion of these rules is in order. The VAR rule says that any quantification variable
has the classifier that it was declared to have. The SUBSM rule says that any element a with
classifier κ can be treated as being of classification κ′ if κ is a subclassifier of κ′. The next two
rules say that classifiers themselves have classifiers, which we will motivate later. Every fraction
form has a classifier, including the literals 1 and 0, whose classifiers are the literals themselves.
Fraction functions can be classified as either FF, the classification of all fraction functions, or as
UFF, the classification of unique fraction functions, that is fraction functions whose lowest node
maps to the fraction 1. Rule ALIVE says that alive is a node for any type. Rule GROUND says that
a node is defined in class C at any instantiation if it is declared in class C. Finally, any node n
can be an assumption below or equal to node n for any fraction classifier, but two assumptions can
only be joined to form an assumption if both assumptions are below some common node n, and
the classifier bound in Asmp is 1.

Now that we have seen the variety of classifiers available in our type system and how each per-
mission element is classified, let us present the new well-formedness rule for permissions, which

10

ALIVE

Γ ⊢ alive : NodeT

GROUND
Γ ⊢ n from C

Γ ⊢ n : NodeC⟨β⟩[a]

Γ ⊢ n : NodeT

Γ ⊢ n : Asmp(n, κ, T)

Γ ⊢ A1 : Asmp(n′, 1, T) Γ ⊢ A2 : Asmp(n′′, 1, T) Γ ⊢ n′ ≤ n Γ ⊢ n′′ ≤ n

Γ ⊢ A1 ⊗ A2 : Asmp(n, 1, T)

Γ ⊢ A1 : Asmp(n′, 1, T) Γ ⊢ A2 : Asmp(n′′, 1, T) Γ ⊢ n′ ≤ n Γ ⊢ n′′ ≤ n

Γ ⊢ A1 ⊕ A2 : Asmp(n, 1, T)

Figure 7: Classification of nodes and assumptions.

updates OLD WF-PERM presented earlier in this section:

WF-Perm

Γ ⊢ r : T Γ ⊢ n : NodeT

Γ ⊢ g : FF(n,alive, T) Γ ⊢ k : κ Γ ⊢ κ ⊑ Fract Γ ⊢ A : Asmp(n, κ, T)
Γ ⊢ access(r, n, g, k, A) wf

Thanks to our changes, the classifiers of each element of the permission succinctly express
the restrictions on each element. Note that the classifier of k, κ is the same κ mentioned in A’s
classifier. This restriction, coupled with the assumption classification rules in Figure 7, ensure that
n = A for any polymorphic permission with a fraction k less than one. Using WF-PERM, our
type system would find that the state invariant for the alive state in the OneField class is indeed
well-formed:

β, f : β, αn : Nodeβ, αg : FF(αn, alive, β), αk : Fract, αA : Asmp(αn,Fract, β)
⊢ access(f, αn, αg, αk, αA) wf

The quantification classifiers also form a number of interesting subclassification relationships.
Subclassification allows programmers to write specifications that are quite expressive, in a way
that is analogous to Java’s F-bounded polymorphism. Subclassification is established with the
judgment Γ ⊢ κ ⊑ κ. The rules for this judgment are presented in Figure 8.

The main points of interest are the relationships between fraction classifiers, and the relation-
ships between fraction function classifiers. Fraction classifiers form a hierarchy from Fract, the
classifier of every fraction, to 0, 1, and Decimal, the classifiers for 0, 1, and fractions between 0
and 1, respectively. LessThan1 and GreaterThan0 have the obvious locations in this hierarchy.
Fraction functions can be classified by FF, or its subclassifier UFF. Fraction functions classi-
fied by UFF have their lowest node mapped to 1, and are the fraction functions used for unique
permissions.

3.0.3 Abstracting Over Quantification Classifiers

While the ability to abstract over fractions and fraction functions is useful, it is not quite as flexible
as we would like. Consider the following scenario: We would like to take our stack, presented

11

REFLEXIVE

Γ ⊢ κ ⊑ κ

TRANSITIVE
Γ ⊢ κ ⊑ κ′ Γ ⊢ κ′ ⊑ κ′′

Γ ⊢ κ ⊑ κ′′ Γ ⊢ 1 ⊑ GreaterThan0

Γ ⊢ Decimal ⊑ GreaterThan0 Γ ⊢ GreaterThan0 ⊑ Fract

Γ ⊢ 0 ⊑ LessThan1 Γ ⊢ Decimal ⊑ LessThan1 Γ ⊢ LessThan1 ⊑ Fract

Γ ⊢ UFF(n1, n2, T) ⊑ FF(n1, n2, T)
Γ ⊢ n ≤ n′ in T Γ ⊢ κ ⊑ κ′

Γ ⊢ Asmp(n, κ, T) ⊑ Asmp(n′, κ′, T)

Γ ⊢ ω′
1 ⊑ ω1 Γ ⊢ ω2 ⊑ ω′

2

Γ ⊢ Ω(ω1, ω2) ⊑ Ω(ω′
1, ω

′
2)

Γ ⊢ ξ ⊑ ξ′

Γ ⊢ Ξ(ξ) ⊑ Ξ(ξ′)

FF UPPER-BOUND
Γ ⊢ α : Ω(, ω)

Γ ⊢ α ⊑ ω

FF LOWER-BOUND
Γ ⊢ α : Ω(ω,)

Γ ⊢ ω ⊑ α

FRACT UPPER-BOUND
Γ ⊢ α : Ξ(ξ)

Γ ⊢ α ⊑ ξ

Figure 8: Subclassification rules

back in Section 1, and specify it is generic over the permission kind of the elements it holds, but
where every each element must be of the same kind. We will only concentrate on the class quantifi-
cation variables and the push method, since this will be enough to motivate higher quantification.
Consider the following specification of Stack:
class Stack<β>[αn : Nodeβ , αg : FF(αn,alive, β), αk : Fract, αA : Asmp(αn,Fract, β)]
extends Object <>[] { ...
boolean push(T i) : unique(this)⊗ access(i, αn, αg, αk, αA) (unique(this)
... }

Now, suppose that at a particular instantiation site, we would like to use this stack, and we
would like it instantiated as a stack of shared permissions to files that are guaranteed to be open.
What instantiations should we use? Unfortunately, we are required to choose definite values for the
fraction αk, and the fraction function, αg. Let us assume that we instantiate the stack as follows;
Stack⟨File⟩[Open, {alive 7→ 1

2
,Open 7→ 1

2
}, 1

2
,Open]. This means that in an environment

where the permission access(r1,Open, {alive 7→ 1
2
,Open 7→ 1

2
}, 1

2
,Open), a share permission,

is available for r1, the call push(r1) is legal. Unfortunately, if we have another share permission
with different fraction values, say access(r2,Open, {alive 7→ 1

4
,Open 7→ 1

4
}, 1

4
,Open), the

call push(r2) is not legal, because the pre-condition for the push method when instantiated is
unique(stack)⊗ access(r1,Open, {alive 7→ 1

2
,Open 7→ 1

2
}, 1

2
,Open). This requires the exact

same fraction and fraction function values.

12

To accomplish our original goal of instantiating a stack that can hold share permissions at any
fraction, we need more power in the specification language. We need the ability to quantify over the
classifiers themselves. Fortunately, the quantification classifiers Ω and Ξ let us do exactly that. Ω is
the classifier of all fraction function classifiers. It stores an upper bound and a lower bound of the
classifiers that can legally be used to instantiate it. Ξ is the classifier of fraction classifiers. It stores
an upper bound of the classifiers that can legally be used to instantiate it. (Why no lower bound?
It was not found to be useful for any of our examples. Adding it would be fairly straightforward.)
By abstracting over these “classifier classifiers,” we can specify that certain fractions and fraction
functions must be similar but not identical.

With Ω and Ξ at our disposal, we can finally specify the Stack class in the way that we desire:
class Stack<β>[αn : Nodeβ , αω : Ω(UFF(αn,alive, β),FF(αn,alive, β)),
αξ : Ξ(Fract), αA : Asmp(αn, αξ, β)]
extends Object <>[] {
...

boolean push(T i) :
unique(this)⊗ (∃αg:αω.∃αk:αξ.access(i, αn, αg, αk, αA)) (unique(this)

... }

With a stack instantiated as, Stack⟨File⟩[Open, FF(Open,alive, File), Decimal, Open],
we can call the push method and pass share permissions of any fractional value. This is in part
thanks to the existential quantification that has been added to the push method’s specification.
When instantiated, it can accept any fraction as long as that fraction is classified by Decimal, and
any fraction function, provided it is classified by FF.

3.0.4 Quantifying Over Symmetric Permission Kinds

Up until this point, we have used Stack as a running example. One of the notable features of
stack is that it can hold permissions of any kind. This is largely due to its implementation. A
programmer can push an object, and the stack will capture some permission associated with that
object. Later on, when the pop method is called, the entire permission to the returned element is
forfeited by the stack. This means that no matter what permission kind the stack holds, we can
count on getting it back later in the execution.

However, some data structures do not provide this feature, and yet could still reasonably support
multiple permission kinds. The polymorphic type system we have presented here allows us to
precisely specify the behavior of these classes. Consider the mutable linked list class shown in
Figure 9. It, like many of the collection classes in the Java standard library, provides random
access to its elements. If we would like to use this list in a larger program that we are attempting
to verify, we must ask what kind of permission we can get back from the get method, especially
in light of multiple calls to the same element:
Object o_1 = list.get(0);

Object o_2 = list.get(0);

Does the second call return the same permission? Does it return no permission? Does it generate an
error? There are multiple ways we might want our list to behave. One observation is that this linked
list can hold elements of any permission kind that can be split indefinitely to produce the same

13

1 class LinkedList <T> {
2 class Node { T item; Node next;

3
4 T get(int i, int cur) {
5 if(i == cur) return item;
6 else return next == null ? null :
7 next.get(i, cur + 1);

8 }

9 }

10
11 int size = 0; Node first = null;
12
13 int size() {...} void add(T item) {...}
14
15 T get(int i) {
16 if(first == null) return null;
17 else return first.get(i,0);
18 }

19 }

Figure 9: A linked list that provides random access to its elements.

permission. We call such permissions “symmetric,” and both the share and pure permissions have
this property (along with the immutable permission, which is not part of our formal treatment).
Using classifier bounds, our type system allows us to specify LinkedList in such a way that it
can be used for share and pure but not full or unique.

Here is how we might specify the LinkedList class: First, we will introduce bounded quanti-
fiers at the class level:
class LinkedList <β>[αn : Nodeβ , αω : Ω(FF(αn,alive, β),FF(αn,alive, β)),
αξ : Ξ(LessThan1), αA : Asmp(αn, αξ, β)] {
...

}

Here note that the fraction classifier αξ is bounded so that it can never classify any fraction whose
value is 1 (which would be necessary for a unique or full permission). The fraction function
classifier αω is bounded from below by FF, which means that it can never be used to classify a
unique fraction function (i.e., the fraction function that would be used in a unique permission).

The effect of these bounds are two-fold. First, they prevent unique and full permissions from
ever being used to instantiate the linked list. This generally means that a unique or full permission
cannot be returned as a result of calling the get method, although because of splitting these per-
missions could still be used to satisfy the pre-condition of the addmethod. Secondly, these bounds
give the analysis enough information to know internally that fractions classified by αξ and fraction
functions classified by αω can be split and still result in a fraction of the same classification. Rules
SAME FRACT and FF-DIV2 in Figure 6 make this possible.

To better illustrate this idea, let us attempt to verify an implementation of the getmethod of the
Node class, beginning on line 4 of Figure 9. Here is a specification along with an implementation,

14

assuming the quantified variables introduced in the previous listing are in scope, and that our
language allows us to work with integers:
class Node {

alive = unique(next)⊗ (∃αg:αω.∃αk:αξ.access(result, αn, αg, αk, αA))
...

β get(int i, int cur) :
unique(this) ((∃αg:αω.∃αk:αξ.access(result, αn, αg, αk, αA))⊗ unique(this) {
if(i == cur,

unpack(alive,1,alive) in
let r = item in

pack alive to alive in r,
let n = next in

if(n == null, null, n.get(i,cur+1))
}

...

}

Verifying the getmethod requires proving the permission ∃αg:αω. ∃αk:αξ. access(r, αn, αg, αk, αA)
twice, once to satisfy the post-condition, and once to enable the receiver to be packed to the alive
state. While splitting rules essentially always allow a access permission to be split in two, by di-
viding its fraction and fraction functions in half, it is the bounds on the classification variables that
ensure the divided fraction and fraction function are still classified by αξ and αω.

Rules SAME FRACT and FF-DIV2 allow the following verification condition to succeed:

αω : Ω(. . .), αg : αω, αξ : Ξ(. . .), αk : αξ;access(result, αn, αg/2, αk/2, αA)
⊢ (∃αg:αω.∃αk:αξ.access(result, αn, αg, αk, αA))

3.0.5 Typing Rules

The type-checking rules for expressions in our language are largely similar to the ones presented
by Bierhoff and Aldrich [2]. Unfortunately, due to space constraints, we are unable to present them
all here. Instead, Figure 10 presents only the rules that have changed due to polymorphism and
for the remainder we refer the interested reader to existing work. The main typing judgment is
Γ;∆; υ ⊢C e : E; υ′, which means, in the context of some valid facts Γ, some linear facts ∆, some
packed-ness state υ, and within the context of class C, the expression e has type E, and will finish
in the packed-ness state υ′.

Our type system allows abstract states of an object to be associated with predicates over the
fields of the object which must hold whenever an object is in the abstract state. We refer to these
predicates as “state invariants.” We use a packing/unpacking methodology [8] in order check that
state invariants do hold, even in the face of reentrant objects. In this methodology, a programmer
will exchange a permission to the receiver in a certain state for the state invariant predicate by
using the unpack2 expression. Before the end of a method body, and before each method call that
is potentially reentrant, a programmer must use the pack expression to reacquire permission to the
receiver, at which point there is the burden of proving the state invariant for the state to which it

2Note that in Plural, our implementation of this approach, pack and unpack operations are inferred [3].

15

P-NEW
Γ ⊢ C⟨T0⟩[a] wf

Γ ⊢ init(C⟨T0⟩[a]) = ⟨f : T , α : κ, P,A⟩ Γ ⊢ t : T Γ ⊢ a : κ Γ;∆ ⊢ [t/f]P

Γ;∆; υ ⊢C new C⟨T0⟩[a](t) : ∃x:C⟨T0⟩.access(x,alive, {alive 7→ 1}, 1, A); υ

P-CALL
Γ ⊢ t0 : C⟨T0⟩[a0] Γ ⊢ sargs(m,C⟨T0⟩[a0]) = (α : κ)

Γ ⊢ a : κ Γ ⊢ mtype(m[a], C⟨T0⟩[a0]) = (x : T , P (E)
Γ ⊢ t : T Γ;∆ ⊢ [t0/this][t0/thisfr][t/x]P

Γ;∆; • ⊢C t0.m[a](t) : [t0/this][t/x]E; •

P-SUPER
Γ ⊢ this : C⟨Tt⟩[at]

Γ ⊢ stype(C⟨Tt⟩[at]) = C ′⟨Ts⟩[as] Γ ⊢ sargs(m,C ′⟨Ts⟩[as]) = (α : κ)
Γ ⊢ a : κ Γ ⊢ mtype(m[a], C ′⟨Ts⟩[as]) = (x : T , P (E)

Γ ⊢ t : T Γ;∆ ⊢ [super/thisfr][t/x]P
Γ;∆; • ⊢C super.m[a](t) : [super/thisfr][t/x]E; •

Figure 10: Expression typing rules modified due to polymorphism

is packed. The context υ tracks whether or not the current receiver is packed or unpacked (our
language only allows access to fields of the current method receiver).

Several typing rules defer to a linear logic proof judgment, Γ;∆ ⊢ P from [2]. We use Linear
Logic [9] to ensure that Access Permissions, which are descriptions of how objects are aliased, are
not duplicated in an unsound manner. The judgment says that in the context of some valid facts Γ
and some linear facts ∆, the predicate P is true.

Rule P-NEW checks an instantiation expression. After checking that the instantiated type is
well-formed, the init function takes an instantiated class type and returns the types of its fields,
the classifications of the polymorphic variables, the initial object state A and the state invariants
for that state P . Both the types of the fields and the initial state invariant are returned in terms of
the instantiating types and permission elements, as the definition of the init function in Figure 11
explains. The rule then checks that the instantiating elements a are actually classified by κ and
then uses the current linear context to prove the required permissions P , but for the arguments that
are passed to the constructor, rather than the fields.

The rule P-CALL checks a method call site. The receiver is checked to ensure that it has some
kind of class type. The sargs function, defined in Figure 11, looks up the classifiers of the static
function parameters, and then the permission arguments, a, are checked to ensure they have the
same classifiers. Additionally, the method arguments are checked to ensure that they have the same
types as the method parameters. Note that the mtype function (Figure 11) takes into account the
static arguments of t0’s type, C⟨T0⟩[a0]. Finally, the linear context is used to prove the method
pre-condition, after all of the appropriate substitutions are made. The rule for type-checking calls

16

class C⟨β⟩[α : κ] extends C ′⟨T ′⟩[a′]{. . . f : T in n initially⟨P, s1 ⊗ . . .⊗ sn⟩ . . .} ∈ Γ

Γ ⊢ init(C ′⟨T ′⟩[a′]) = (f ′′ : T ′′, α′ : κ′, P ′, A′)
Γ; (P, access(super,alive, {alive 7→ 1}, A′)) ⊢ invC(alive, A)⊗⊤
Γ ⊢ init(C⟨T ⟩[a]) = ([T/β][a/α](f : T , f ′′ : T ′′), [a/α](P ⊗ P ′), A)

Γ ⊢ init(Object⟨⟩[]) = (·, ·, 1,alive)

class C⟨β⟩[α : κ] extends C ′⟨Ts⟩[as]{. . .M . . .}
T m[αm : κm](T x) : P (E = e ∈ M κ′

m = [a/α]κm

Γ ⊢ sargs(m,C⟨T ⟩[a]) = (αm : κ′
m)

class C⟨β⟩[α : κ] extends C ′⟨Ts⟩[as]{. . .M . . .}
T m[αm : κm](T x) : P (E = e ∈ M

T ′ = [Tc/β]T P ′ = ([a/αm]([ac/α]P)) E ′ = [Tc/β]([a/αm]([ac/α]E))

Γ ⊢ mtype(m[a], C⟨Tc⟩[ac]) = (x : T ′, P ′ (E ′)

class C⟨β⟩[α : κ] extends C ′⟨Ts⟩[as]{. . .} ∈ Γ T ′ = [T/β]Ts a′ = [a/α]as

Γ ⊢ stype(C⟨T ⟩[a]) = C ′⟨T ′⟩[a′]

Figure 11: Various utility judgments used by type-checking and well-formedness rules.

of superclass methods, P-SUPER, works very much in the same way. Our type system uses a
“frames” methodology [8] for ensuring soundness in the face of subclassing, here evident in the
appearance of the thisfr and super references.

Beyond the expression typing rules, there are also a number of rules for ensuring that an entire
program is well-formed. These are given in Figure 12. Rule P-CLASS checks that a class is
well-formed by adding all of the fields, type variables and quantification variables to the valid
context. Every declared quantification classifier is checked to ensure that it is well-formed. It then
checks that the field, state, method, constructor and state invariant declarations are well-formed.
Rule P-METHOD checks that an method’s body correctly implements its specification. First, the
classification quantifiers and argument types are checked for well-formedness. An augmented
context is used to check that the pre- and post-conditions are well-formed. The override judgment
checks that the method’s specification is behaviorally compatible with any methods it overrides.
Finally, given the permissions specified in the post-condition, the method body is type-checked to
ensure that it correctly satisfies its post-condition, and that the receiver is packed on return from
the method. Again, we regret that due to space constraints, some judgments that are reused without
changes from existing work, such as override, invC , linear logic proof, permission splitting and
joining rules, and the field, state and constructor well-formedness judgments, are not presented in
this paper. Interested readers are referred to existing work [1].

17

P-CLASS

ftypes(F) = f : T Γ′ = Γ, β, f : T , a : κ Γ′ ⊢ κ wf Γ′ ⊢ C ′⟨T ⟩[a] wf
Γ′ ⊢ F ok in C Γ′, this : C⟨β⟩[α] ⊢ M ok in C⟨β⟩[α] Γ′ ⊢ N ok

Γ′ ⊢ I ok in C⟨β⟩[α] Γ′ ⊢ R ok in C Moverrides all methods with thisfr perm in C’

Γ ⊢ class C⟨β⟩[α : κ] extends C ′⟨T ⟩[a]{F R I N M} ok

P-METHOD

Γ′ = Γ, α : κ, x : T Γ′ ⊢ κ wf Γ′ ⊢ T wf Γ′ ⊢ P wf
Γ′, result : Tr ⊢ Pr wf Γ′ ⊢ override(m,C⟨β⟩[αc], x : T , P (∃result : Tr.Pr)

Γ′;P ; • ⊢C e : ∃result : Tr.Pr ⊗⊤; •
Γ ⊢ m[α : κ](T x) : P (∃result : Tr.Pr = e ok in C⟨β⟩[αc]

Figure 12: Well-formedness rules for the entire program.

4 Syntactic Sugar
Up until this point we have been assuming that programmer would be writing out the full specifi-
cations as we have presented them in our language. This system is quite flexible and expressive.
However, given the syntactic complexity of some of the quantification bounds, for example [αn :
Nodeβ, αω : Ω(FF(αn,alive, β), FF(αn,alive, β)), αξ : Ξ(LessThan1), αA : Asmp(αn, αξ, β)]
from our linked list example, we would really like to simplify things a bit! In this section we will
introduce syntactic sugar that greatly simplifies our system of polymorphic access permissions
while still retaining most of the expressiveness.

In order to simplify our system, we will introduce polymorphic variables that stand for entire
Access Permissions, rather than for each permission element. These variables, when introduced,
will be declared with one of three types of bounds:

Exact This variable bound introduces a permission that refers to a specific fractional quantity.
Every time it is used, the instantiated permission will be required to be exactly the same.

Similar This variable bound introduces what is essentially a family of permissions each of the
same permission kind. Every time this permission variable is used, instantiations are required
to be of the same kind, but not necessarily the same fraction.

Symmetric This variable bound introduces a permission variable that is identical to ‘Similar’
in every way, and additionally can be divided an infinite number of times. Therefore, it
can only be instantiated with permissions of kind pure and share (and immutable in our
implementation).

Using these simplified bounds, the linked list class presented in the previous section could be
written in the following manner:
class LinkedList <β>[p : symmetric(β)] {

18

VAR-Ω
Γ ⊢ α : Ω(ω1, ω2)

Γ ⊢ α wf

VAR-Ξ
Γ ⊢ α : Ξ(ξ)

Γ ⊢ α wf
Γ ⊢ n1 ≤ n2 in T Γ ⊢ T wf

Γ ⊢ FF(n1, n2, T) wf

Γ ⊢ n1 ≤ n2 in T Γ ⊢ T wf
Γ ⊢ UFF(n1, n2, T) wf

FF TYPE
Γ ⊢ ω1 wf Γ ⊢ ω2 wf Γ ⊢ ω1 ⊑ ω2

Γ ⊢ Ω(ω1, ω2) wf

NODE
Γ ⊢ T wf

Γ ⊢ NodeT wf

ASSUMPTION
Γ ⊢ n : NodeT Γ ⊢ κ wf Γ ⊢ κ ⊑ FractΓ ⊢ T wf

Γ ⊢ Asmp(n, κ, T) wf

FRACTS

Γ ⊢ ξ wf
FRACT TYPE

Γ ⊢ Ξ(ξ) wf

Figure 13: Rules for checking the well-formedness of quantification classifiers.

class Node {
β item; Node next;
alive = unique(next)⊗ p(item)

β get(int i, int cur):unique(this) (unique(this)⊗ p(result)
}

alive = unique(first)
...

void add(β item) : unique(this)⊗ p(item) (unique(this)

β get(int i) : unique(this) (unique(this)⊗ p(result)
}

The permission variable p stands for a permission that can be divided any number of time but will
still result in a permission of the same kind. Specifically, each time p is mentioned, it may refer to
different fractions in the below fraction and the fraction function. Note that the bound of p must
still declare the type β with which its permissions will be associated.

These new permission variables are truly syntactic sugar. They can be defined in terms of our
lower level quantification variables. For each of the three types of bounds for permission variables,
there is a different way to translate its declaration and its use. The table in Figure 14 summarizes
the transformation from syntactic sugar to the formal language.

Of particular note is the translation of the use of a similar or symmetric permission vari-
able. Each use is translated into an Access Permission that existentially quantifies the fraction
and fraction functions. The classifiers of these existentially quantified variables are the classifiers
introduced when the permission variable itself was declared. Additionally, the symmetric permis-
sion variable is rewritten as a series of quantification variables with a fraction classifier αξ, that is

19

Declaration and Use
Sugar Rewrite
p : exact(T) αξ : Ξ(Fract), αn : NodeT , αg : FF(αn,alive, T), αk : αξ,

αA : Asmp(αn, αξ, T)
p(r) access(r, αn, αg, αk, αA)

p : similar(T) αn : NodeT , αω : Ω(UFF(αn, alive, T),FF(αn,alive, T)),
αξ : Ξ(Fract), αA : Asmp(αn, αξ, T)

p(r) ∃αg:αω.∃αk:αξ.access(r, αn, αg, αk, αA)

p : symmetric(T) αn : NodeT , αω : Ω(FF(αn, alive, T),FF(αn,alive, T)),
αξ : Ξ(LessThan1), αA : Asmp(αn, αξ, T)

p(r) ∃αg:αω.∃αk:αξ.access(r, αn, αg, αk, αA)

Figure 14: The translation of permission variables, which are syntactic sugar, into the formal
language, at both their declaration and use site.

bounded above by LessThan1, and a fraction function classifier αω, that is bounded below by FF.
Given such a large difference in syntactic complexity, readers may reasonably wonder whether

or not our formal system could have been written to include these simplified polymorphic per-
missions from the start. Our motivation for presenting polymorphic access permissions in the
manner is two-fold. First, we feel strongly that presenting the simplified polymorphic permissions
in terms of a formal system where each element of the Access Permission can be quantified helps
in understanding the semantics of the simplified permission bounds. This is particularly true for
appreciating the different between the exact permission and the similar and symmetric permis-
sions. It is crucial to understand that there is some extra level of quantification that is occurring
in the later case that is not occurring in the former case. Second, the full system does allow some
specifications that cannot be written in syntactic sugar. For example, if desired, a programmer
could force multiple permissions to share the same guaranteed state. Still, due to the large gain
in simplicity, we have chosen to implement the simplified syntax directly in our static analysis,
described in the next section.

5 Implementation
In order to better evaluate polymorphic Access Permissions, we have implemented a typestate
checker for the Java language based on this approach. Our implementation is an extension to the
Plural [3] typestate checker for Java, which was in turn based on the original type system presented
by Bierhoff and Aldrich [2]. Our polymorphic typestate checker implements the simplified system
from the previous section directly, and does not allow abstract over each permission element.
All of the specifications are written using Java 1.5 annotations. This presented a few interesting
challenges.

The entire Plural implementation, which includes the polymorphic variant described here, the

20

source, and a suite of tests, is available for download3. This suite of tests includes Java versions of
all of the examples presented in this paper, which are correctly verified.

The following listing is a specification of the Node class from our earlier linked list exam-
ple, and serves to illustrate the basic form of the Java annotations that can legally be used in our
implementation:
@Symmetric(value="p",type="T")

@Invariants(@State(name="alive",inv="unique(next) * p(item)"))

class Node<T> {
@Apply("p") Node next; T item;

@Unique

@ResultPolyVar("p")

T get(int i, int cur) {...}
}

The @Symmetric annotation introduces a polymorphic permission variable for the scope of
the class, which must be associated with a type. The @Exact and @Similar annotations exist
as well, and the permissions introduced have the same semantics presented in Section 4. The
@Invariants and @State annotations are already a part of the Plural typestate checker, and are
used to specify state invariants, but now polymorphic permissions can be used in these invariants.
The @ResultPolyVar annotation, along with the @PolyVar annotation, allows us to mention
these polymorphic permissions in specifications. Here is how we might instantiate a similarly
specified LinkedList class:
@ResultShare("Open") Socket

getItemFromList(@Unique @Apply("share(Open)") LinkedList <Socket> l) {

return l.get(0);
}

The @Apply annotation applies the share permission kind with a state guarantee of Open to the
polymorphic permission parameter of LinkedList. At each application site, the applied permis-
sion is checked to ensure that it matches the bound on the parameter. Here, since the permission
is share, it does. This permission kind and guarantee is subsequently substituted for p in the
specification of the get method, and the result is that the post-condition of getItemFromList
is satisfied. In this case, that means that getItemFromList returns a share permission with a
guarantee of Open.

In our current implementation, polymorphic permissions can only be introduced at the class
level, not at the method level. Polymorphic permissions must be instantiated at construction time.
However, Java 1.5 annotations can not be used on constructor expressions. Therefore a very simple
unification algorithm tracks the permissions that are applied to any expression.

Most of the checking functionality piggy-backs on top of the existing Plural tool. Within the
scope of a polymorphic variable, a simple flow-based analysis tracks polymorphic permissions as
they flow from specification to specification. This analysis treats polymorphic permission vari-
ables as being indivisible unless declared as symmetric. As previously mentioned, the analysis
also tracks the instantiation of each reference. At method pre- and post-conditions, and receiver

3http://code.google.com/p/pluralism/

21

pack and unpack sites, this instantiation information is used to determine which permissions are
consumed and which permissions are produced. In the case where a polymorphic permission is in-
stantiated with an actual permission, our analysis substitutes the actual permission for the variable
in the method specification, and then the original Plural implementation tracks whether or not the
appropriate permissions are available in order to satisfy the method pre-condition, and also tracks
the newly produced permissions.

6 Related Work
Existing approaches have contained some similar ideas to the ones presented here, particularly
with respect to quantification. In the end, the novelty of our work comes from the manner in which
these ideas have been combined, and the novel quantification bounds that we have used to extend
modular typestate checking to generic classes.

The original type system upon which this work was based [2] contains a very limited form
of quantification. This system allows existential and universal quantification over fractions and
fraction functions, but only within the scope of the predicate syntactic form, P . This quantification
was limited in many ways. Notably, the scope of the quantifiers could not extend over an entire
method specification, only within a pre- or post-condition. Our work significantly improves upon
the usefulness of the original approach by extending the scope of polymorphism to the method and
class level, by allowing state guarantees and assumptions to be abstracted over, and by allowing
quantification classifiers themselves to be abstracted over. This last point is what truly enabled the
specification and verification of collections that we have seen in practice.

Boyland’s fractional permissions [6] do allow polymorphism, by allowing universal quantifica-
tion over fractions in procedure specifications. This allows programmers to write procedures that
return the same fractions they were given, as long as the procedure body does not depend on them.
The main difference is that our work supports a larger number of permission kinds (Boyland’s
work essentially supports unique and immutable) which means that we must support more inter-
esting sorts of quantification. For instance, Boyland’s work does not have an analogous notion of
polymorphism over fraction and fraction function classifiers, likely because there are not enough
permission kinds to make this a useful feature.

Higher-Order Separation Logic [4] is able to verify some similar sorts of behavioral properties
as our work. For example, using standard logical quantifiers, a function can be defined that is
polymorphic in the state of the objects that it accepts and returns. However, existing work does not
allow polymorphism over the permission to heap locations. This is not surprising considering that
most formulations of Separation Logic have only one “permission.” That being said, recent work
has extended fractional permissions to separation logic [5]. This work does not permit quantifica-
tion over fractions themselves.

Finally, Girard’s original work on Linear Logic [9] allowed for quantification over linear facts.
However, this work was not presented in the context of managing program resources and therefore
it is not clear how this quantification would translate to permission accounting for polymorphic
programs.

22

7 Conclusion
In this paper we extended an existing type system, designed to prevent the misuse of object proto-
cols, to allow for polymorphism over Access Permissions, the static predicates that track what state
each object is in, and how those objects may be aliased. This results in increased precision in the
specification of classes whose implementations do not constrain the elements they contain, such as
a stack that is equally capable of holding unique, open files as shared, open sockets. Our experi-
ence has shown that this expressiveness is necessary in order to be able to specify commonly used
classes without false positives. While this system was expressed in terms of a low level calculus
where each part of an Access Permission can be abstracted individually, we showed a simplified
syntax of our system that can be rewritten in terms of the underlying calculus and presented a
typestate checker for Java based on this system.

References
[1] Kevin Bierhoff. API Protocol Compliance in Object-Oriented Software. PhD thesis, Carnegie

Mellon University, April 2009.

[2] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In
The 22nd annual ACM SIGPLAN conference on Object oriented programming systems and
applications, pages 301–320. ACM Press, 2007.

[3] Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. Practical API protocol check-
ing with access permissions. In Proceedings of the 23rd European Conference on Object-
Oriented Programming (ECOOP ‘09), pages 195–0219, July 2009.

[4] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. Bi-hyperdoctrines, higher-order separa-
tion logic, and abstraction. ACM Trans. Program. Lang. Syst., 29(5):24, 2007.

[5] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission
accounting in separation logic. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 2005.

[6] John Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static
Analysis: 10th International Symposium, volume 2694 of Lecture Notes in Computer Science,
pages 55–72, Berlin, Heidelberg, New York, 2003. Springer.

[7] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level software.
SIGPLAN Not., 36(5):59–69, 2001.

[8] Robert DeLine and Manuel Fähndrich. Typestates for objects. In ECOOP ’04: European
Conference on Object-Oriented Programming, pages 465–490. Springer, 2004.

[9] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987.

23

[10] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

[11] Pallavi Joshi and Koushik Sen. Predictive typestate checking of multithreaded java pro-
grams. Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM International
Conference on, pages 288–296, Sept. 2008.

[12] K. Rustan M. Leino. Data groups: specifying the modification of extended state. In The
13th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 144–153. ACM Press, 1998.

[13] Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for en-
hancing software reliability. IEEE Trans. Softw. Eng., 12(1):157–171, 1986.

24

